Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 172163, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569958

RESUMEN

The early growth stage of plants is vital to community diversity and community regeneration. The Janzen-Connell hypothesis predicts that conspecific density dependence lowers the survival of conspecific seedlings by attracting specialist natural enemies, promoting the recruitment and performance of heterospecific neighbors. Recent work has underscored how this conspecific negative density dependence may be mediated by mutualists - such as how mycorrhizal fungi may mediate the accrual of host-specific pathogens beneath the crown of conspecific adult trees. Aboveground mutualist and enemy interactions exist as well, however, and may provide useful insight into density dependence that are as of yet unexplored. Using a long-term seedling demographic dataset in a subtropical forest plot in central China, we confirmed that conspecific neighborhoods had a significant negative effect on seedling survival in this subtropical forest. Furthermore, although we detected more leaf damage in species that were closely related to ants, we found that the presence of ants had significant positive effects on seedling survival. Beside this, we also found a negative effect of ant appearance on seedling growth which may reflect a trade-off between survival and growth. Overall, our findings suggested that ants and conspecific neighborhoods played important but inverse roles on seedling survival and growth. Our results suggest ants may mediate the influence of conspecific negative density dependence on seedling survival at community level.


Asunto(s)
Hormigas , Bosques , Herbivoria , Plantones , China , Animales , Plantones/fisiología , Hormigas/fisiología , Árboles/fisiología , Densidad de Población , Simbiosis
2.
Glob Chang Biol ; 30(1): e17075, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273586

RESUMEN

The strength and persistence of the tropical carbon sink hinges on the long-term responses of woody growth to climatic variations and increasing CO2 . However, the sensitivity of tropical woody growth to these environmental changes is poorly understood, leading to large uncertainties in growth predictions. Here, we used tree ring records from a Southeast Asian tropical forest to constrain ED2.2-hydro, a terrestrial biosphere model with explicit vegetation demography. Specifically, we assessed individual-level woody growth responses to historical climate variability and increases in atmospheric CO2 (Ca ). When forced with historical Ca , ED2.2-hydro reproduced the magnitude of increases in intercellular CO2 concentration (a major determinant of photosynthesis) estimated from tree ring carbon isotope records. In contrast, simulated growth trends were considerably larger than those obtained from tree rings, suggesting that woody biomass production efficiency (WBPE = woody biomass production:gross primary productivity) was overestimated by the model. The estimated WBPE decline under increasing Ca based on model-data discrepancy was comparable to or stronger than (depending on tree species and size) the observed WBPE changes from a multi-year mature-forest CO2 fertilization experiment. In addition, we found that ED2.2-hydro generally overestimated climatic sensitivity of woody growth, especially for late-successional plant functional types. The model-data discrepancy in growth sensitivity to climate was likely caused by underestimating WBPE in hot and dry years due to commonly used model assumptions on carbon use efficiency and allocation. To our knowledge, this is the first study to constrain model predictions of individual tree-level growth sensitivity to Ca and climate against tropical tree-ring data. Our results suggest that improving model processes related to WBPE is crucial to obtain better predictions of tropical forest responses to droughts and increasing Ca . More accurate parameterization of WBPE will likely reduce the stimulation of woody growth by Ca rise predicted by biosphere models.


Asunto(s)
Dióxido de Carbono , Clima Tropical , Madera , Bosques , Secuestro de Carbono , Biomasa
3.
Ecology ; 105(1): e4200, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37897325

RESUMEN

Soil microbes impact plant community structure and diversity through plant-soil feedbacks. However, linking the relative abundance of plant pathogens and mutualists to differential plant recruitment remains challenging. Here, we tested for microbial mediation of pairwise feedback using a reciprocal transplant experiment in a lowland tropical forest in Panama paired with amplicon sequencing of soil and roots. We found evidence that plant species identity alters the microbial community, and these changes in microbial composition alter subsequent growth and survival of conspecific plants. We also found that greater community dissimilarity between species in their arbuscular mycorrhizal and nonpathogenic fungi predicted increased positive feedback. Finally, we identified specific microbial taxa across our target functional groups that differentially accumulated under conspecific settings. Collectively, these findings clarify how soil pathogens and mutualists mediate net feedback effects on plant recruitment, with implications for management and restoration.


Asunto(s)
Microbiota , Micobioma , Micorrizas , Retroalimentación , Suelo , Microbiología del Suelo , Bosques , Plantas , Raíces de Plantas
4.
ISME J ; 17(12): 2160-2168, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37773438

RESUMEN

The soil priming effect (PE), defined as the modification of soil organic matter decomposition by labile carbon (C) inputs, is known to influence C storage in terrestrial ecosystems. However, how chronic nutrient addition, particularly in leguminous and non-leguminous forests, will affect PE through interaction with nutrient (e.g., nitrogen and phosphorus) availability is still unclear. Therefore, we collected soils from leguminous and non-leguminous subtropical plantations across a suite of historical nutrient addition regimes. We added 13C-labeled glucose to investigate how background soil nutrient conditions and microbial communities affect priming and its potential microbial mechanisms. Glucose addition increased soil organic matter decomposition and prompted positive priming in all soils, regardless of dominant overstory tree species or fertilizer treatment. In non-leguminous soil, only combined nitrogen and phosphorus addition led to a higher positive priming than the control. Conversely, soils beneath N-fixing leguminous plants responded positively to P addition alone, as well as to joint NP addition compared to control. Using DNA stable-isotope probing, high-throughput quantitative PCR, enzyme assays and microbial C substrate utilization, we found that positive PE was associated with increased microbial C utilization, accompanied by an increase in microbial community activity, nutrient-related gene abundance, and enzyme activities. Our findings suggest that the balance between soil available N and P effects on the PE,  was dependent on rhizosphere microbial community composition. Furthermore, these findings highlight the roles of the interaction between plants and their symbiotic microbial communities in affecting soil priming and improve our understanding of the potential microbial pathways underlying soil PEs.


Asunto(s)
Fabaceae , Microbiota , Suelo/química , Nitrógeno/análisis , Fósforo , Microbiología del Suelo , Bosques , Plantas/metabolismo , Carbono/análisis , Glucosa/metabolismo
5.
PLoS Biol ; 19(8): e3001322, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34411089

RESUMEN

Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host's physiological capacities; however, the identity and functional role(s) of key members of the microbiome ("core microbiome") in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems' capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts' plastic and adaptive responses to environmental change requires (i) recognizing that individual host-microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.


Asunto(s)
Aclimatación , Organismos Acuáticos/microbiología , Evolución Biológica , Ecología , Microbiota , Animales , Ecosistema , Humanos , Simbiosis
6.
Nat Commun ; 11(1): 2204, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32371877

RESUMEN

Empirical studies show that plant-soil feedbacks (PSF) can generate negative density dependent (NDD) recruitment capable of maintaining plant community diversity at landscape scales. However, the observation that common plants often exhibit relatively weaker NDD than rare plants at local scales is difficult to reconcile with the maintenance of overall plant diversity. We develop a spatially explicit simulation model that tracks the community dynamics of microbial mutualists, pathogens, and their plant hosts. We find that net PSF effects vary as a function of both host abundance and key microbial traits (e.g., host affinity) in ways that are compatible with both common plants exhibiting relatively weaker local NDD, while promoting overall species diversity. The model generates a series of testable predictions linking key microbial traits and the relative abundance of host species, to the strength and scale of PSF and overall plant community diversity.


Asunto(s)
Ecosistema , Micorrizas/fisiología , Plantas/metabolismo , Microbiología del Suelo , Suelo/química , Simbiosis/fisiología , Algoritmos , Retroalimentación Fisiológica/fisiología , Interacciones Microbiota-Huesped , Modelos Teóricos , Micorrizas/clasificación , Plantas/clasificación , Plantas/microbiología , Especificidad de la Especie
7.
Nat Commun ; 11(1): 2684, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457365

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Genes (Basel) ; 10(6)2019 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-31181852

RESUMEN

Assistance dog training programs can see as many as 60% of their trainees dismissed. Many training programs utilize behavioral assays prior to admittance to identify likely successful candidates, yet such assays can be insconsistent. Recently, four canine retrotransposon mobile element insertions (MEIs) in or near genes WBSCR17 (Cfa6.6 and Cfa6.7), GTF2I (Cfa6.66) and POM121 (Cfa6.83) were identified in domestic dogs and gray wolves. Variations in these MEIs were significantly associated with a heightened propensity to initiate prolonged social contact or hypersociability. Using our dataset of 837 dogs, 228 of which had paired survey-based behavioral data, we discovered that one of the insertions in WBSCR17 is the most important predictor of dog sociable behaviors related to human proximity, measured by the Canine Behavioral Assessment Research Questionnaire (C-BARQ©). We found a positive correlation between insertions at Cfa6.6 and dog separation distress in the form of restlessness when about to be left alone by the owner. Lastly, assistance dogs showed significant heterozygosity deficiency at locus Cfa6.6 and higher frequency of insertions at Cfa6.6 and Cfa6.7. We suggest that training programs could utilize this genetic survey to screen for MEIs at WBSCR17 to identify dogs with sociable traits compatible with successful assistance dog performance.


Asunto(s)
Conducta Animal , Secuencias Repetitivas Esparcidas/genética , N-Acetilgalactosaminiltransferasas/genética , Animales , Perros , Educación , Femenino , Homocigoto , Humanos , Masculino , Fenotipo , Lobos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...